Jumat, 04 November 2016

Sistem Kecerdasan Buatan

Definisi Kecerdasan Buatan

Istilah kecerdasan buatan sebenarnya berasal dari bahasa Inggris: “Artificial Intelligence”. Jika diartikan tiap kata, artificial artinya buatan, sedangkan intelligence adalah kata sifat yang berarti cerdas. Jadi artificial intelligence maksudnya adalah sesuatu buatan atau suatu tiruan yang cerdas. Cerdas di sini kemungkinan maksudnya adalah kepandaian atau ketajaman dalam berpikir, seperti halnya otak manusia dalam menyelesaikan suatu masalah.

Kecerdasan buatan merupakan salah satu cabang bagian ilmu komputer yang membuat agar mesin (komputer) dapat melakukan pekerjaan seperti dan sebaik yang dilakukan oleh manusia, dan dalam merepresentasikan pengetahuan lebih banyak menggunakan bentuk simbol-simbol daripada bilangan dan proses informasi berdasarkan metode heuristic1 atau dengan berdasarkan sejumlah aturan.

Artificial Intelligence (AI) merupakan sub bidang pengetahuan komputer yang khusus ditujukan untuk membuat software dan hardware yang sepenuhnya bisa menirukan beberapa fungsi otak manusia.

Manusia bisa menjadi pandai dalam menyelesaikan segala permasalahan di dunia ini karena manusia mempunyai pengetahuan dan pengalaman Pengetahuan diperoleh dari belajar. Semakin banyak bekal pengetahuan yang dimiliki oleh seseorang tentu saja diharapkan akan lebih mampu dalam menyelesaikan permasalahan. Namu bekal pengetahuan saja tidak cukup, manusia juga diberi akal untuk melakukan penalaran, mengambil kesimpulan berdasarkan pengetahuan dan pengalaman yang mereka miliki. Tanpa memiliki kemampuan untuk menalar dengan baik, manusia dengan segudang pengalaman dan pengetahuan tidak akan dapat menyelesaikan masalah dengan baik. Demikian pula dengan kemampuan menalar yang sangat baik, namun tanpa bekal pengetahuan dan pengalaman yang memadai, manusia juga tidak akan bisa menyelesaikan masalah dengan baik.

Agar komputer bisa bertindak seperti dan sebaik manusia, maka komputer juga harus diberi bekal pengetahuan dan mempunyai kemampuan untuk menalar. Untuk itu AI akan mencoba untuk memberikan beberapa metoda untuk membekali komputer dengan kedua komponen tersebut agar komputer bisa menjadi mesin pintar.

METODE PENCARIAN DAN PELACAKAN
Pelacakan adalah teknik untuk pencarian. Didalam pencarian ada dua kemungkinan hasil yang didapat yaitu menemukan dan tidak menemukan. Sehingga pencarian merupakan teknik yang penting dalam AI. Hal penting dalam menentukan keberhasilan sistem berdasarkan kecerdasan adalah kesuksesan dalam pencarian dan pencocokan. Pencarian adalah suatu proses mencari solusi dari suatu permasalahan melalui sekumpulan kemungkinan ruang keadaan (state place). Ruang keadaan merupakan suatu ruang yang berisi semua keadaan yang mungkin.
Untuk mengukur performansi metode pencarian, terdapat empat kriteria yang dapat digunakan :
  • Completeness (Kelengkapan) : apakah metode tersebut menjamin penemuan solusi jika solusinya memang ada ?
  • Time compexity (Kekompleksan waktu) : berapa lama waktu yang diperlukan ?
  • Space complexity (Kekompleksan ruang) : berapa banyak memori yang di perlukan ?
  • Optimality (Optimal) : apakah metode tersebut menjamin menemukan solusi yang terbaik jika beberapa solusi berbeda ?
Searching di dalam AI (Artificial Intelligence) adalah salah satu motode penyelesaian masalah dengan pencarian solusi pada suatu permasalahan yang dihadapi.
Teknik searching sendiri terbagi menjadi dua, yaitu:
  1. Blind searching
  2. Heuristic searching 
1.      Blind Searching
            Blind Searching adalah model pencarian buta atau pencarian yang tidak memiliki inforamasi awal, model pencarian ini memiliki tiga ciri – ciri utama yaitu:
-          Membangkitkan simpul berdasarkan urutan
-          Kalau ada solusi maka solusi akan ditemukan
-          Hanya memiliki informasi tentang node yang telah dibuka (node selanjutnya tidak diketahui).

BFS (Breadth-first Search)atau sering disebut juga pencarian melebar
contoh

pada BFS teknik pencarian pesoalannya adalah dengan membuka node (titik) per levelnya.. sehingga pada persoalan diatas penyelesaian pada BFS adalah.

jadi urutan node yang di lalui pada pencarian BFS adalah. a,b,c,d,e,f,g,h

DFS (Depth-first Search)atau sering disebut juga pencarian mendalam
sesuai namanya pencarian mendalam, DFS tidak mencari solusi per level, namun mencari pada kedalaman sebelah kiri terlebih dahulu. masih menggunakan permasalahan di awal, pada DFS akan di dapatkan solusi seperti ini.

jadi solusi node yang di lalui pada DFS adalah a,b,e,h
dfs memiliki beberapa keuntungan,yaitu memori yang di gunakan tidak terlalu banyak karena tidak membuka semua node.

UCS (Uniform cost search) perpaduan antara BFS dan DFS
pada UCS, pencarian nya mempehatikan cost/jarak antara 1 node ke node lain.
contoh nya.

pada permasalahan diatas telah ditentukan jarak antara node. maka pada ucs akan membuka node yang memiliki nilai/cost antar node yang terendah.
pada gambar diatas jika kita buka
c = 10
b = 20
a = 10

karena nilai c dan a sama maka teserah mau buka yang mana lebih dahulu.
seandainya kita mebuka c maka kita teruskan pencariannya, jika kita buka 
d = 10+5 =15
e = 10+40 = 50 (mencapai goal, namun nilai cost nya dirasa masih terlalu besar)

maka kita buka node d, lalu akan didapat
e = 10+5+30 = 45 (nilai pada pencarian ini pun terasa masih terlau besar) maka dari itu kita buka node yang kecil di awal tadi yaitu node a

setelah kita buka node a akan di dapat
e = 10 + 20 = 30 (di dapatkan goal dengan solusi terbaik)

dari kasus diatas dapat kita lihat, ada banyak cara unuk mendapatkan solusi. namun dari berbagai macam penyelesaian kasus, kita dapat mencari solusi yang paling optimal dan ini lah ke unggulan dari UCS

2.     Teknik Pencarian Heuristik (Heuristic Search)

Heuristik adalah sebuah teknik yang mengembangkan efisiensi dalam proses pencarian, namum dengan kemungkinan mengorbankan kelengkapan (completeness).
Fungsi heuristik digunakan untuk mengevaluasi keadaan-keadaan problema individual dan menentukan seberapa jauh hal tersebut dapat digunakan untuk mendapatkan solusi yang diinginkan.
Jenis-jenis Heuristic Searching:
– Generate and Test.
– Hill Climbing.
– Best First Search.
– Means-EndAnlysis, Constraint Satisfaction, dll.

PEMBANGKITAN dan PENGUJIAN (Generate and Test)
Metode ini merupakan penggabungan antara depth-first search dengan pelacakan mundur (backtracking), yaitu bergerak ke belakang menuju pada suatu keadaan awal.

      Algoritma :
    1. Bangkitkan suatu kemungkinan solusi (membangkitkan suatu tititk tertentu atau lintasan tertentu dari keadaan awal).
    2. Uji untuk melihat apakah node tersebut benar-benar merupakan solusinya dengan cara membandingkan node terebut atau node akhir dari suatu lintasan yang  dipilih dengan kumpulan tujuan yang diharapkan.
    3. Jika solusi ditemukan, keluar. Jika tidak, ulangi kembali langkah pertama.

    Contoh : “Travelling Salesman Problem (TSP)”

    *) Seorang salesman ingin mengunjungi n kota. Jarak antara tiap-tiap kota sudah diketahui. Kita ingin mengetahui ruter terpendek dimana setaip kota hanya  boleh dikkunjungi tepat 1 kali. Misalkan ada 4 kota  dengan jarak antara tiap-tiap kota seperti berikut ini :
    Teknik Pencarian Heuristik (Heuristic Search)
    Alur pencarian dengan Generate and Test 
    Pencarian ke-
    Lintasan
    Panjang Lintasan
    Lintasan terpilih
    Panjang Lintasan terpilih
    1
    ABCD
    19
    ABCD
    19
    2
    ABDC
    18
    ABDC
    18
    3
    ACBD
    12
    ACBD
    12
    4
    ACDB
    13
    ACBD
    12
    5
    ADBC
    16
    ACBD
    12
    Dst…..




     PENDAKIAN BUKIT (Hill Climbing)
    • Metode ini hampir sama dengan metode pembangkitan dan pengujian, hanya saja proses pengujian dilakukan dengan menggunakan fungsi heuristic. Pembangkitan keadaan berikutnya tergantung pada feedback dari prosedur pengetesan. Tes yang berupa fungsi heuristic ini akan menunjukkan seberapa baiknya nilai terkaan yang diambil terhadap keadaan-keadaan lainnyayang mungkin.
    • Algoritma:
    • 1. Cari operator yang belum pernah digunakan; gunakan operator ini untuk mendapatkan keadaan yang baru.
      a) Kerjakan langkah-langkah berikut sampai solusinya ditemukan atau sampai tidak ada operator baru yang akan diaplikasikan pada keadaan sekarang : Cari operator yang belum digunakan; gunakan operator ini untuk mendapatkan keadaan yang baru.
      b) Evaluasi keadaan baru tersebut : – Jika keadaan baru merupakan tujuan, keluar – Jika bukan tujuan, namun nilainya lebih baik daripada keadaan sekarang, maka jadikan keadaan baru tersebut menjadi keadaan sekarang. – Jika keadaan baru tidak lebih baik daripada keadaan sekarang, maka lanjutkan iterasi.
    • Contoh: TSP dengan Simple Hill Climbing Disini ruang keadaan berisi semua kemungkinan lintasan yang mungkin. Operator digunakan untuk menukar posisi kota-kota yang bersebelahan. Apabila ada n kota, dan kita ingin mencari kombinasi lintasan dengan menukar posisi urutan 2 kota, maka kita akan mendapatkan sebanyak n!/2!(n-2)! atau sebanyak 6 kombinasi. Fungsi heuristic yang digunakan adalah panjang lintasan yang terjadi.
    Teknik Pencarian Heuristik (Heuristic Search)



Refrensi:

https://prezi.com/oekxfwhdazr5/blind-search-and-heuristik/
yuliana.lecturer.pens.ac.id/.../Search%20Algoritma/Praktikum%20-%20Blind%20Sear...
hendrik.staff.gunadarma.ac.id/Downloads/files/23065/teknik-pencarian-heuristik.pdf
cs.unsyiah.ac.id/~irvanizam/ai/INF303-05.pdf
artint.info/html/ArtInt_56.html

Sabtu, 01 Oktober 2016

Artificial Neural Network, Fuzzy Logic, AI (Artificial Intelegence) Tugas Softskill

Artificial Neural Network

Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.

Fungsi dari Neural Network diantaranya adalah:
  1. Pengklasifikasian pola
  2. Memetakan pola yang didapat dari input ke dalam pola baru pada output
  3. Penyimpan pola yang akan dipanggil kembali
  4. Memetakan pola-pola yang sejenis
  5. Pengoptimasi permasalahan
  6. Prediksi
Sejarah Neural Network


Perkembangan ilmu Neural Network sudah ada sejak tahun 1943 ketika Warren McCulloch dan Walter Pitts memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi.


Gambar 2.1 McCulloch & Pitts, penemu pertama Neural Network

Hal ini dilanjutkan pada penelitian yang dikerjakan oleh Rosenblatt pada tahun 1950, dimana dia berhasil menemukan sebuah two-layer network, yang disebut sebagai perceptron. Perceptron memungkinkan untuk pekerjaan klasifikasi pembelajaran tertentu dengan penambahan bobot pada setiap koneksi antar-network.

Gambar 2.2 Perceptron

Konsep Neural Network

1.  Proses Kerja Jaringan Syaraf Pada Otak Manusia
Ide dasar Neural Network dimulai dari otak manusia, dimana otak memuat  sekitar 1011 neuron. Neuron ini berfungsi memproses setiap informasi yang masuk. Satu neuron memiliki 1 akson, dan minimal 1 dendrit. Setiap sel syaraf terhubung dengan syaraf lain, jumlahnya mencapai sekitar 104 sinapsis. Masing-masing sel itu saling berinteraksi satu sama lain yang menghasilkan kemampuan tertentu pada kerja otak manusia.

Gambar 2.3 Struktur Neuron pada otak manusia

Dari gambar di atas, bisa dilihat ada beberapa bagian dari otak manusia, yaitu:
  1. Dendrit (Dendrites) berfungsi untuk mengirimkan impuls yang diterima ke badan sel syaraf.
  2. Akson (Axon) berfungsi untuk mengirimkan impuls dari badan sel ke jaringan lain
  3. Sinapsis berfungsi sebagai unit fungsional di antara dua sel syaraf.
Proses yang terjadi pada otak manusia adalah:
Sebuah neuron menerima impuls dari neuron lain melalui dendrit dan mengirimkan sinyal yang dihasilkan oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. Kekuatan sinapsis bisa menurun/meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold).

2.  Struktur Neural Network
Dari struktur neuron pada otak manusia, dan proses kerja yang dijelaskan di atas, maka konsep dasar pembangunan neural network buatan (Artificial Neural Network) terbentuk. Ide mendasar dari Artificial Neural Network (ANN) adalah mengadopsi mekanisme berpikir sebuah sistem atau aplikasi yang menyerupai otak manusia, baik untuk pemrosesan berbagai sinyal elemen yang diterima, toleransi terhadap kesalahan/error, dan juga parallel processing.


Gambar 2.4 Struktur ANN

Karakteristik dari ANN dilihat dari pola hubungan antar neuron, metode penentuan bobot dari tiap koneksi, dan fungsi aktivasinya. Gambar di atas menjelaskan struktur ANN secara mendasar, yang dalam kenyataannya tidak hanya sederhana seperti itu.
  1. Input, berfungsi seperti dendrite
  2. Output, berfungsi seperti akson
  3. Fungsi aktivasi, berfungsi seperti sinapsis
Neural network dibangun dari banyak node/unit yang dihubungkan oleh link secara langsung. Link dari unit yang satu ke unit yang lainnya digunakan untuk melakukan propagasi aktivasi dari unit pertama ke unit selanjutnya. Setiap link memiliki bobot numerik. Bobot ini menentukan kekuatan serta penanda dari sebuah konektivitas.

Proses pada ANN dimulai dari input yang diterima oleh neuron beserta dengan nilai bobot dari tiap-tiap input yang ada. Setelah masuk ke dalam neuron, nilai input yang ada akan dijumlahkan oleh suatu fungsi perambatan (summing function), yang bisa dilihat seperti pada di gambar dengan lambang sigma (∑). Hasil penjumlahan akan diproses oleh fungsi aktivasi setiap neuron, disini akan dibandingkan hasil penjumlahan dengan threshold (nilai ambang) tertentu. Jika nilai melebihi threshold, maka aktivasi neuron akan dibatalkan, sebaliknya, jika masih dibawah nilaithreshold, neuron akan diaktifkan. Setelah aktif, neuron akan mengirimkan nilai output melalui bobot-bobot outputnya ke semua neuron yang berhubungan dengannya. Proses ini akan terus berulang pada input-input selanjutnya.

ANN terdiri dari banyak neuron di dalamnya. Neuron-neuron ini akan dikelompokkan ke dalam beberapa layer. Neuron yang terdapat pada tiap layer dihubungkan dengan neuron pada layer lainnya. Hal ini tentunya tidak berlaku pada layer input dan output, tapi hanya layer yang berada di antaranya. Informasi yang diterima di layer input dilanjutkan ke layer-layer dalam ANN secara satu persatu hingga mencapai layer terakhir/layer output. Layer yang terletak di antara input dan output disebut sebagai hidden layer. Namun, tidak semua ANN memiliki hidden layer, ada juga yang hanya terdapat layer input dan output saja.


Penerapan Artifical Neural Network

Artificial Neural Network (Jaringan Syaraf Tiruan), dimana dalam sepuluh tahun terakhir pengaplikasiannya telah banyak dikembangkan di berbagai bidang dalam kehidupan manusia. Seperti contoh Aplikasi Adaptive Inteligent System adalah Sistem mengenali Panas, Hangat, dan Dingin Menggunakan Jaringan Syaraf Tiruan dan Himpunan Fuzzy begitu juga seperti Adaptive Noise Canceling yang menggunakan jaringan syaraf tiruan untuk membersihkan gangguan pada telephone (dikenal dengan echo) dan mengurangi kesalahan tranmisi modem dll.

Salah satu contoh nya bisa dilihat saya mengambil dari jurnal www.ejournal.himsya.ac.id/index.php/HIMSYATECH/article/view/45/40

Dalam perkembangannya, ilmu Kecerdasan Buatan atau Artificial Intelligence (AI) telah banyak diterapkan pada teknologi komputer dalam menyelesaikan suatu masalah yang umumnya memerlukan pemikiran seorang ahli, dan ANN Perceptron merupakan salah satu dari metode AI yang telah terbukti cukup handal untuk digunakan sebagai teknik pengenalan atau pengindentifikasian.Tujuan dari dibuatnya karya tulis ilmiah ini adalah untuk menerapkan metode Jaringan Syaraf Tiruan atau Artificial Neural Network dengan algortima Perceptron dalam menentukan penyakit cacar daun dan bercak daun pada daun tembakau serta daun cengkeh, dimana sampel daun-daun tersebut dianalisis melalui kedelapan gejala atau ciri yang ditimbulkannya.

Tahapan awal yang dilakukan yaitu mengumpulkan beberapa sampel daun tembakau dan daun cengkeh, baik yang terkena penyakit maupun tidak. Kemudian mengelompokkan gejala atau ciri khusus yang ditimbulkan pada setiap daunnya dari penyakit cacar daun dan bercak daun. Ciri penyakit yang positif terlihat pada masing-masing daun akan direpresentasikan dengan nilai bipolar [1, -1], dimana ciri tersebut akan digunakan sebagai nilai masukan pada tahap pelatihan (training) dan pengujian (testing) dalam metode ANN.

 Dari hasil pengujian terhadap sampel sebanyak 20 daun untuk tahap training dan 10 sampel daun untuk tahap testing, dengan perbandingan penyakit bercak daun dan cacar daun adalah 50 : 50, learning rate sebesar 0,7, lapisan masukan sebanyak 8 buah, dan 1 buah lapisan luaran, didapat bahwa metode ANN Perceptron memiliki persentase keberhasilan pengenalan penyakit sebesar 61% - 73% untuk data non-learning, dan 100% untuk data learning pada kedua jenis daun tersebut.


Fuzzy Logic

       Fuzzy logic jika di atau dalam bahasa Indonesia logika Fuzzy adalah teknik/ metode yang dipakai untuk mengatasi hal yang tidak pasti pada masalah – masalah yang mempunyai banyak jawaban. Pada dasarnya Fuzzy logic merupakan logika bernilai banyak/ multivalued logic yang mampu mendefinisikan nilai diantara keadaan yang konvensional seperti benar atau salah, ya atau tidak, putih atau hitam dan lain-lain. Penalaran Logika Fuzzy memnyediakan cara untuk memahami kinerja system dengan cara menilai input dan output system dari hasil pengamatan. Logika Fuzzy menyediakan cara untuk menggambarkan kesimpulan pasti dari informasi yang samar-samar, ambigu dan tidak tepat. Fuzzy logic Pertama kali dikembangkan oleh Lotfi A. Zadeh tahun 1965.

Alasan Kenapa digunakan logika Fuzzy:
-  Karena konsep logika Fuzzy mudah dimengerti.
- Logika Fuzzy fleksibel.
- Logika Fuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks.
- Logika Fuzzy dapat bekerja dengan teknik-teknik kendali secara konvensional.
- Logika Fuzzy memiliki toleransi terhadap data-data yang tepat.
- Logika Fuzzy didasarkan pada bahasa alami.
- Logika Fuzzy dapat membangun dan mengaplikasikan pengalaman-pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan.

Profesor Lotfi A. Zadeh  adalah guru besar pada University of California yang merupakan pencetus sekaligus yang memasarkan ide tentang cara mekanisme pengolahan atau manajemen ketidakpastian yang kemudian dikenal dengan logika fuzzy. Dalam penyajiannya vaiabel-variabel yang akan digunakan harus cukup menggambarkan ke-fuzzy-an tetapi di lain pihak persamaan-persamaan yang dihasilkan dari variable-variabel itu haruslah cukup sederhana sehingga komputasinya menjadi cukup mudah.

 Karena itu Profesor Lotfi A Zadeh kemudian memperoleh ide untuk menyajikannya dengan menentukan “derajat keanggotaan” (membership function) dari masing-masing variabelnya. Fungsi keanggotaan (membership function), adalah suatu kurva yang menunjukkan pemetaan titik input data kedalam nilai keanggotaanya (sering juga disebut dengan derajat keanggotaan) yang memiliki interval antara 0 sampai 1. ° Derajat Keanggotaan (membership function) adalah : derajat dimana nilai crisp dengan fungsi keanggotaan ( dari 0 sampai 1 ), juga mengacu sebagai tingkat keanggotaan, nilai kebenaran, atau masukan fuzzy. ° Label adalah nama deskriptif yang digunakan untuk mengidentifikasikan sebuah fungsi keanggotaan. ° Fungsi Keanggotaan adalah mendefinisikan fuzzy set dengan memetakkan masukan crisp dari domainnya ke derajat keanggotaan.  Masukan Crisp adalah masukan yang tegas dan tertentu. ° Lingkup/Domain adalah lebar fungsi keanggotaan. Jangkauan konsep, biasanya bilangan, tempat dimana fungsi keanggotaan dipetakkan. ° Daerah Batasan Crisp adalah jangkauan seluruh nilai yang dapat diaplikasikan pada variabel sistem.

Penerapan Fuzzy Logic

Di bawah ini adalah beberapa contoh aplikasi Fuzzy Logic:
• Sistem Pengereman Mobil (Nissan).

• Pengontrol kereta bawah tanah di Sendai, Jepang.
• Penghematan Konsumsi Daya Listrik AC (Mitsubhishi Heavy Industries Tokyo).

Saya mengambil contoh dari jurnal yang bisa dilihat di http://eprints.dinus.ac.id/12387/1/jurnal_12328.pdf

Di kehidupan sehari-hari manusia dihadapkan dalam permasalahan untuk pengambilan keputusan. Hal ini juga terjadi pada para petani dalam melakukan penilaian tentang kualitas dan menentukan harga jual gabah dari hasil panennya. Dengan menggunakan logika fuzzy untuk menetukan harga gabah bertujuan untuk membantu para petani agar dapat melakukan penilaian dengan cepat, tepat dan akurat. Pada metode Mamdani,untuk mendapatkan hasil diperlukan tahap-tahap : Fuzzifikasi, Aplikasi fungsi implikasi, Komposisi aturan-aturan dengan metode maksimum, dan Defuzzifikasi dengan metode centroid. Dengan proses tersebut diharapkan bisa mendapatkan suatu hasil keputusan yang terbaik. Dengan ini para petani ataupun pembeli dapat menggunakan sistem ini sebagai refensi untuk membantu menentukan harga gabahnya, karena harga yang dihasilkan pada sistem ini sesuai dengan harga gabah di pasaran. Jadi jika petani maupun pembeli menerapkan harga dari sistem ini harga yang diterapkan sudah sesuai dengan kualitas gabah yang akan dijual.


AI (Artificial Intelegence)

Berbagai litelatur mengenai kecerdasan buatan menyebutkan bahwa ide mengenai kecerdasan buatan diawali pada awal abad 17 ketika Rene Descartes mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin yang rumit.

Perkembangan terus berlanjut, Bertrand Russell dan Alfred North Whitehead menerbitkan Principia Mathematica, yang merombak logika formal. Warren McCulloch dan Walter Pitts menerbitkan “Kalkulus Logis Gagasan yang tetap ada dalam Aktivitas” pada 1943 yang meletakkan pondasi awal untuk jaringan syaraf.

Tahun 1950-an adalah periode usaha aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk menjalankan mesin Ferranti Mark I di University of Manchester (UK): sebuah program permainan naskah yang ditulis oleh Christopher Strachey dan program permainan catur yang ditulis oleh Dietrich Prinz. John McCarthy membuat istilah “Kecerdasan Buatan” pada konferensi pertama pada tahun 1956, selain itu dia juga menemukan bahasa pemrograman Lisp. Alan Turing memperkenalkan “Turing test” sebagai sebuah cara untuk mengoperasionalkan test perilaku cerdas. Joseph Weizenbaum membangun ELIZA, sebuah chatterbot yang menerapkan psikoterapi Rogerian.

Marvin Minsky dan Seymour Papert menerbitkan Perceptrons, yang mendemostrasikan batas jaringan syaraf sederhana dan Alain Colmerauer mengembangkan bahasa komputer Prolog. 


Ted Shortliffe mendemonstrasikan kekuatan sistem berbasis aturan untuk representasi pengetahuan dan inferensi dalam diagnosa dan terapi medis yang diyakini sebagai sistem pakar pertama. 


Pada awalnya, kecerdasan buatan hanya ada di universitas-universitas dan laboratorium penelitian, serta hanya sedikit produk yang dihasilkan dan dikembangkan. Menjelang akhir 1970-an dan 1980-an, mulai dikembangkan secara penuh dan hasilnya berangsur-angsur dipublikasikan di khalayak umum. Permasalahan di dalam kecerdasan buatan akan selalu bertambah dan berkembang seiring dengan laju perkembangan zaman menuju arah globalisasi dalam setiap aspek kehidupan manusia, yang membawa persoalan-persoalan yang semakin beragam pula.

Program kecerdasan buatan lebih sederhana dalam pengoperasiannya, sehingga banyak membantu pemakai. Program konvensional dijalankan secara prosedural dan kaku, rangkaian tahap solusinya sudah didefinisikan secara tepat oleh pemrogramnya. Sebaliknya, pada program kecerdasan buatan untuk mendapatkan solusi yang memuaskan dilakukan pendekatan trial and error, mirip seperti apa yang dilakukan oleh manusia.


Hubungan Artificial Intelligence dengan Kognisi Manusia

Artificial intelligence adalah salah satu bagian ilmu komputer yang membuat agar mesin (komputer) dapat melakukan pekerjaan seperti dan sebaik yang dilakukan oleh manusia. Kecerdasan buatan juga merupakan suatu sistem informasi yang berhubungan dengan penangkapan, pemodelan dan penyimpanan kecerdasan manusia dalam sebuah sistem teknologi informasi sehingga sistem tersebut memiliki kecerdasan seperti yang dimiliki manusia. Sistem ini dikembangkan untuk mengembangkan metode dan sistem untuk menyelesaikan masalah, biasanya diselesaikan melalui aktifivitas intelektual manusia, misal pengolahan citra, perencanaan, peramalan dan lain-lain, meningkatkan kinerja sistem informasi yang berbasis komputer.

Artificial intelligence merupakan suatu sistem yang membuat mesin secerdas manusia. Untuk itu, sistem ini harus berpedoman pada sistem kognisi manusia, yaitu cara berfikir manusia, cara manusia bernalar, mengenali suatu stimulus, memecahkan masalah, mengingat, dan mengambil keputusan serta merespon dan bertindak. Dengan demikian para peneliti ilmu ini dapat membuat suatu sistem, aplikasi, atau program yang dapat melakukan pekerjaan-pekerjaan manusia dengan lebih baik, menggunakan perangkat mesin yang canggih untuk mempermudah pekerjaan manusia dikehidupan nyata.

Sistem Pakar
Sistem Pakar adalah Suatu bidang dari ilmu kecerdasan buatan dalam kaitannya dengan sistem pendukung keputusan yang dirancang dengan memasukkan unsur-unsur keahlian dari satu atau beberapa orang pakar kedalam suatu konsep terprogram (code base concept) dalam rangka pengambilan keputusan.
Ternyata sistem banyak diterapkan dibidang-bidang, contohnya:
Penerapan Sistem pakar dalam Industri / Manufaktur
Manufaktur di definisikan sebagai urutan-urutan kegiatan yang saling berhubungan meliputi perancangan, perencanaan, pemilihan material, produksi, pengontrolan kualitas, menajemen serta pemasaran produk. Proses manufaktur yang penyelesaiannya dapat dibantu oleh system pakar antara lain :
–   Sistem Pakar Dalam Perancangan PRIDE(Pinch Roll Interactive Design Expert / Environment). Sistem pakar ini digunakan untuk merancang system pengaturan kertas untuk mesin fotocopy. Sistem ini membuat rancangan dengan representasi pengetahuan tentang rancangan berdasarkan kumpulan goal, metoda perancangan, generator dan aturan-aturan yang terstruktur.
–  System Pakar Dalam Perencanaan Wood Trus fabrication Application merupakan contoh system pakar dalam proses perencanaan. System ini dibuat dengan menggunakan shell sitem pakar SPS (Semi Intelligent Process Selector).
–   Sistem Pakar Dalam Penjadwalan Sistem pakar juga digunakan dalam penjadwalan, dibawah ini adalah beberapan contoh kegunaan system pakar dalam penjadwalan :

– Contionuous Caster Steel Mill Scheduling Application


Sumber/referensi :
  • http://eprints.dinus.ac.id/12387/1/jurnal_12328.pdf
  • http://www.temukanpengertian.com/2013/08/pengertian-fuzzy-logic.html
  • http://socs.binus.ac.id/2012/07/26/konsep-neural-network/
  • www.ejournal.himsya.ac.id/index.php/HIMSYATECH/article/view/45/40
  • Jones, Tim. (2009). Artificial intelligence : a systems approach. Canada : Jones and Bartlett Publishers.
  • Kusumadewi, S. (2003). Artificial intelligence (teknik dan aplikasinya). Yogyakarta Graha Ilmu.
  • Russel, S and Norvigm P. (2010). Artificial intelligence : a modern approach. Prentice Hall, Second Edition
  • Solso R.L, Machlin O.H & Machlin M.K. (2007).Psikologi kognitif, Terjemahan : Rahardanto M. & Batuadji K. Jakarta : Erlangga.
  • Poole, David & Mackworth, Alan. (2010). Artificial intelligence : foundations of computational agents. New York : Cambrigde University Press
  • Syamsuddin,Aries , PENGANTAR SISTEM PAKAR , 2004, www.IlmuKomputer.Com